Coupled Ocean-Wave Models for Galway Bay
Abstract:
Coupled models are a recent development in ocean modelling, developer teams have included ocean and wave coupling by combining existing models each dedicated to a specific physics. Two theoretical formulations are mostly used for the implementation, both giving the same equations of evolution and interaction terms known as the vortex-force formalism. One approach is using a Lagrangian framework defining an exact averaged operator following the fluid particles, the other approach is Eulerian making use of a multi-scale expansion. In both cases the larger current components are found to be forced by gravity and infra-gravity waves.
The Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modelling system is a widely used code, the vortex-force formalism has been implemented in 2012 coupling the Regional Ocean Modeling System (ROMS) with the Simulation Wave Nearshore wave model (SWAN). The implementation has been validated with academic cases and used in several real case studies in the last decade.
The work presented here is making use of COAWST, a coupled model is set-up for Galway Bay running a 1-year hind-cast application for 2017 and preliminary results are shown here. The performance of the coupled model is compared with each stand-alone model, using in-situ data as a reference. In the last releases of COAWST the wave model WAVEWATCHIII has been added and can be used in the coupled system. This new feature is tested and the results are compared against SWAN, both wave codes are solving the same equations but different technical choices have been made resulting in different capabilities.