Role of Tides in Ice-Ocean Interactions Over the Antarctic Continental Shelf and Slope
Abstract:
We utilize high-resolution process modeling in idealized settings to perform a series of experiments with varying tidal amplitude, wind speed, atmospheric forcing and sea ice parameters. To better understand the dynamics of tidally-forced ice/ocean flows, we also develop a 1D model to simulate a barotropic ocean overlaid by viscous-plastic sea ice, driven by tidal forcing and wind stress. We use this 1D model to explore the effects of drag coefficients, ice rheology parameters, wind stress and tidal forcing, and quantify the stress terms at ice-ocean interface and ocean bottom. Our results show that sea ice plays a role in redistributing tidal-input along-slope momentum away from the slope current, which affects the structure of the ASC and overturning of the slope front. The rectification of tidal currents enhances the ocean-ice heat flux, modulating the upper ocean stratification, as well as the formation and export of dense shelf water. We discuss the implications of our findings for circum-Antarctic variations in the structure and overturning of the ASC, and for redistribution of water masses and sea ice around Antarctica.