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1. Introduction 
 

Ice-shelf flexure modelling was performed using a full 3D finite-difference 
elastic model, which takes into account sub-ice-shelf seawater flow. The sub-
ice seawater flow was described by the wave equation (Holdsworth and 
Glynn, 1978), so the ice-shelf flexures result from the hydrostatic pressure 
perturbations in sub-ice seawater. The modelling of ice-shelf vibrations was 
successfully performed in (Holdsworth and Glynn, 1978) by employing of the 
thin-plate approximation. The numerical simulation has shown that the 
modelling of the ice-shelf vibrations can be performed in the full model, 
which links well known momentum equations with the wave equation for non-
viscous fluid, i.e. for sub-ice seawater. Nevertheless, the numerical simulation 
reveals that the numerical solution stability requires the application of an 
additional method in the numerical approximation. The aim of this work is in 
an attempt to apply an additional approximation in the boundary conditions to 
improve the numerical stability of the model. 
 

 
Fig. 1. Ice-shelf center line profile, which has trapezoidal shape and which 

was applied in the numerical experiments. 
 

 
 

Fig. 1. Ice-shelf geometry (ice-shelf surface) applied in the numerical 
experiments. 

 
 

2. Field equations 
 
Basic equations 
 
Momentum equations: 
 
 
 
 
 
 
 
 
 

 
 
where       is stress tensor, U,V,W are two horizontal displacements and vertical 
displacement, respectively.  
 
Wave equation (Holdsworth and Glynn, 1978): 
 
 
 
 
 
 
where d0 is sub-ice channel height; P’ is pressure perturbations in sub-ice 
water  
 
Boundary conditions 
 
Boundary conditions at ice-shelf base (as the example of the used 
approximation) (z=hb(x,y)): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
3. Numerical experiments 
 
Ice shelf length is equal to 3 km 
 

 
 

Fig. 2. The histories of ice-shelf terminus deflection obtained for the 
incident ocean waves in the “infragravity” part of the spectrum (the term 

“infragravity” was introduced in (Bromirski et al., 2010)). The amplitude of 
the incident wave is equal to 1 m. 

 

 
Fig. 3. Successive ice-shelf deflection profiles. Lsh=3km. The period of the 
forcing is equal to 150s, the amplitude of the incident wave is equal to 1 m. 
 

 
 

Fig. 4. Ice-shelf maximal and minimal deflections, respectively. Lsh=3km. 
The period of the forcing is equal to 150s, the amplitude of the forcing is 

equal to 1m. 
 
Ice shelf length is equal to 5 km 
 

 
 

Fig. 5. The histories of ice-shelf terminus deflection obtained for the 
incident ocean waves in the “infragravity” part of the spectrum (Bromirski 

et al., 2010). The amplitude of the incident wave is equal to 1 m. 
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Fig. 6. Successive profiles of the pressure perturbations along the center-
line. Lsh=5km. The period of the forcing is equal to 100s, the amplitude of 

the incident wave is equal to 1 m. 

 
Ice shelf length is equal to 9 km 
 

 
 

Fig. 7. The histories of ice-shelf terminus deflection obtained for the 
incident ocean waves in the “infragravity” part of the spectrum (Bromirski 

et al., 2010). The amplitude of the incident wave is equal to 1 m. 
 

 
 
Fig. 8. Ice-shelf deflections. Lsh=9km. The period of the forcing is equal to 

50s, amplitude of the forcing is equal to 1m. 

 
 

 
4. Summary 
 
The numerical simulation has shown that the modelling of the ice-shelf 
vibrations can be performed in the full model, which links well known 
momentum equations with the wave equation for non-viscous fluid, i.e. for 
sub-ice sea water. Nevertheless, the numerical simulation reveals that the 
numerical stability requires the application of an additional method of the 
numerical approximation. On the other hand, in contrariety to the Holdsworth 
& Glynn model (thin-plate model), ice-shelf vibrations not always follow for 
the incident wave in the full model. “Not always follow” means that incident 
ocean waves induce cyclical ice-shelf deflections with the same frequency, but 
the deflection amplitude (in non-resonance case) is not equal to the one in the 
incident wave. Evidently, the explanation can be given from the point of view 
of the elastic medium deformation theory. Exactly, the full model considers a 
common elastic medium deformation, which implies that there is a distinction 
in the deformations of different horizontal layers in the medium. Thus, the 

three stress components xz , yz , zz  are non-zero. This forcing 

complementary hampers the deflections of the plate. In other words, the plate 
described by the full model is anticipated to be more rigid in comparison with 
the thin plate, which is described by the thin plate model.  
 
 
References 
 

Bassis J.N., Fricker H.A., Coleman R., Minster J.-B.: An investigation into the 
forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East 
Antarcyica. J. of Glaciol. 54 (184): 17-27, 2008. 
Bromirski P.D., Sergienko O.V., and MacAyeal D.R.: Transoceanic 
infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett. 2009; 
37: L02502, doi:10.1029/2009GL041488. 
 
Holdsworth G and Glynn J.: Iceberg calving from floating glaciers by a 
vibrating mechanism. Nature. 274, 464-466, 1978. 
 
Goodman D.J., Wadhams P. and Squire V.A.: The flexural response of a 
tabular ice island to ocean swell. 1980; Ann. Glaciol., 1: 23–27. 
 
Konovalov Y. V.: Ice-shelf resonance deflections modelled with a 2D elastic 
centre-line model. Physical Review & Research International, 4(1), 9-29, 
2014. 
 
Landau LD, Lifshitz EM. Theory of Elasticity. Vol. 7. 3rd ed. Butterworth-
Heinemann; 1986. 
 
Lurie AI. Theory of Elasticity. Springer; 1999. 
 
Reeh N., Christensen E.L., Mayer C., Olesen O.B.: Tidal bending of glaciers: 
a linear viscoelastic approach. Ann. Glaciol. 2003; 37: 83–89. 
 
Schulson E.M.: The Structure and Mechanical Behavior of Ice. JOM. 1999; 
51 (2): 21-27. 
 
Sergienko O.V.: Elastic response of floating glacier ice to impact of long-
period ocean waves. J. Geophys. Res. 2010; 115, F04028, 
doi:10.1029/2010JF001721. 
 
Vaughan D.G.: Tidal flexure at ice shelf margins. J. Geophys. Res. 100(B4), 
6213-6224, 2002. 
 

0 1000 2000 3000 4000 5000
-30

-25

-20

-15

-10

-5

0

5

10
Pressure perturbations

Distance from the Grounding Line, m

P
',

k
P

a

 

 

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-5

-2

-1

0

1

2

3
Displacement at the ice-shelf terminus, Lsh=9km

Time, a

D
is

p
la

ce
m

en
t,

m

 

 

T=50s

T=80s

T=100s

0

0.5

1

00.20.40.60.81
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y, non-dim.
X, non-dim.

Ice Shelf Deflections

D
is

p
la

ce
m

en
t,

m


	Страница 1

