

Abstract

Geologic carbon sequestration through carbon dioxide (CO_2) injection is one option for climate change mitigation. The injection-induced migration of both CO₂ and resident formation fluids (brine) may pose a risk to overlying underground sources of drinking water (USDW). The Area of Review (AoR) is defined as the portion of a USDW that is susceptible to degradation from brine and/or CO_2 leakage. A sequestration operator needs to conduct site characterization, monitoring, and corrective action within the AoR. The open-conduit assumption gives un-necessary conservatism and can lead to very large AoRs. In this presentation we discuss a risk-based alternative AoR approach where the AoR is divided into three tiers. As each of the three tiers would have a different level of regulatory requirements, the cost of compliancy should be reduced when compared to the current AoR delineation, although the overall size of the AoR does not change.

1. Geologic Carbon Sequestration

- CO₂ from stationary sources is injected deep underground
- CO_2 is buoyant, but held in place by caprock
- Existing brine is displaced
- Abandoned wells and faults are potential leakage pathways

2. Threshold pressure

Threshold pressure is the pressure increase in the injection formation necessary to lift brine from the injection formation to an USDW.

A multi-tiered approach for carbon sequestration Area of **Review delineation**

Karl W. Bandilla¹, Jens T. Birkholzer², Abdullah Cihan², Michael A. Celia¹

email: bandilla@princeton.edu

¹Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA

²Division of Earth Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA

3. Area of review delineation

- CO₂ plume and pressure response are predicted using computer modeling
- Threshold pressure is predicted based on density difference, vertical distance from injection formation to USDW, and preinjection pressure conditions
- AoR is the overlay of CO₂ footprint and the area where the threshold pressure is exceeded.

4. Leakage pathways

- Leakage can occur inside the well casing as well as along the outside of the casing through fractures in the well cement and host rock.
- Flow inside of the casing is usually blocked by cement plugs. Flow outside of the casing may interact with intermediate formations.

5. Brine Leakage

- In an open conduit, sustained flow occurs once the threshold pressure is exceeded.
- Fractures with lower permeability lead to significant reduction of flow.
- Leakage into intermediate formations can significantly reduce flow into USDW.

