

# Carbon Cycle Feedbacks



Recent results compiled in the IPCC AR5 WG1 report indicate that carbon cycle feedbacks will positively reinforce climate warming. However, the magnitude of these feedbacks in Earth System Models is uncertain and decreased from IPCC AR4.

Feedback Examples (+ emits more CO<sub>2</sub>):

- Enhanced decomposition of soils and litter (+)
- CO2 fertilization of land photosynthesis (-)
- Warming of the surface ocean (+)

Having models is one thing, but we want to see what recent observational records can tell us about the size of carbon cycle feedbacks.

## Learning about feedbacks

We use Markov-Chain Monte Carlo sampling to estimate the parameters of a simple carbon model using global observations of the carbon system. Fitting the model to measurements, in a way that properly treats uncertainty, allows us to examine the range of possible future states of the world when performing policy analysis.

![](_page_0_Figure_12.jpeg)

5005\$70

800 600

650 ਿੱਛ 600 <u>ය</u> 550 O<sup>™</sup> 500 O 450 400 ¥

We use two estimates of the emissions from historical land use change. BOOK is a benchmark estimate widely used in the carbon cycle community based on historical forest inventories (Houghton 2012). ISAM is a newly released estimate based on model simulations (Jain 2013). Both are plausible, but the higher ISAM emissions require significantly weaker positive carbon cycle feedbacks, which reduces the burden on mitigation policy.

# Carbon Cycle Feedbacks and the Social Cost of Carbon Joseph Majkut, Robert Kopp\*, Jorge Sarmiento, Thomas Frölicher†, Michael Oppenheimer Princeton University, Princeton, NJ; \* Rutgers University, New Brunswick, NJ; † ETH Zurich, Zurich, Switzerland

# Results and Findings

![](_page_0_Figure_24.jpeg)

#### Historical land use change (LUC) emissions

| <u>Learnin</u>                                                                                                                                                                                    | g Can Impro                                                    | <u>ve Policy Ou</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tcomes                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Assuming a central decision maker is making climate<br>policy with DICE and follows model outcomes, we can<br>use new information about the carbon cycle feedbacks<br>to improve policy outcomes. |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| (1) Includ<br>making yie<br>by reducing                                                                                                                                                           | ing an active carl<br>lds a large impro<br>g the mitigation [  | oon cycle in the d<br>vement in policy<br>ourden early in p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ecision<br>outcome<br>olicy. |
| (2) Resolv<br>feedback m<br>damages of                                                                                                                                                            | ing the uncertair<br>nay prevent billio<br>r inefficient mitig | ity in the carbon<br>ns of dollars of ir<br>gation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cycle<br>ncreased            |
| The improv<br>risk averse                                                                                                                                                                         | vement to policy<br>decision maker.                            | prove Policy Outcomes<br>ision maker is making climate<br>illows model outcomes, we can<br>oout the carbon cycle feedbacks<br>omes.<br>a carbon cycle in the decision<br>nprovement in policy outcome<br>ion burden early in policy.<br>rtainty in the carbon cycle<br>billions of dollars of increased<br>mitigation.<br>bicy increases substantially for a<br>ker.<br>Benefit of Policy Transitions<br>lion]<br>erance<br>a) ( $\mu=0.006, \mu=1.4$ ) ( $\mu=-30-3, \mu=2$ )<br>Iding Carbon Cycle Feedbacks<br>y instead of no policy<br>232 349<br>bodel instead of DICE2009 Carbon<br>17 15 (1)<br>Historical LUC<br>Memissions case<br>330 341<br>lative Emissions<br>y erance<br>1950 2000 |                              |
| Vet Cons<br>2005\$ t                                                                                                                                                                              | umption Ben<br>rillion, billion                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| Decreasin                                                                                                                                                                                         | g Risk Toleran                                                 | ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| <sup>2=0.03, η=0)</sup><br>Creating Po                                                                                                                                                            | (ρ=0.0125,η=1)                                                 | ( <i>ρ</i> =0.006, <i>η</i> =1.4)<br><b>g Carbon Cycle</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ρ=-3e-3,η=2)<br>Feedbacks   |
| Adopting DI                                                                                                                                                                                       | CE2009 policy ins<br>168                                       | tead of no policy<br>232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 349                          |
| Jsing uncer<br>I 8                                                                                                                                                                                | tain carbon model<br>18                                        | instead of DICE2<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 009 Carbon<br>15 (1)         |
| Refining K                                                                                                                                                                                        | nowledge in His                                                | torical LUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Correctly ide                                                                                                                                                                                     | entifying ISAM em                                              | issions case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| 123                                                                                                                                                                                               | 320                                                            | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 420                          |
| Correctly ide                                                                                                                                                                                     | entifying BOOK er                                              | nissions case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)                          |
| 130                                                                                                                                                                                               | 285                                                            | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 341                          |
| 450                                                                                                                                                                                               | Cumulative                                                     | e Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 400<br>350<br>300<br>250<br>り 250<br>り 200<br>150                                                                                                                                                 | - ISAM<br>- BOOK<br>- Fossil                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| 100                                                                                                                                                                                               |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| 0 1950                                                                                                                                                                                            | 1000                                                           | 1050 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| 1000                                                                                                                                                                                              | 1900<br>Ye                                                     | ear 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |

![](_page_0_Picture_28.jpeg)

# Dice Model

he DICE model<sup>1</sup> represents the interaction of the conomy, the carbon cycle and the climate.

CO<sub>2</sub> emissions are produced as an externality of conomic activity and increase the atmospheric CO<sub>2</sub> concentration and temperature.

Femperature warming has a negative impact on conomic growth.

Mitigation activity pays extra to reduce emissions.

![](_page_0_Figure_34.jpeg)

*Ie couple the uncertain carbon model to the* imate and economy models within DICE to camine how carbon cycle feedbacks affect policy ecisions and how learning can affect policy itcomes.

ordhaus, W. The Climate Casino, Yale University Press 2013

## Future Learning

is framework provides a tool for further onitoring of the global carbon cycle and learning out carbon cycle feedbacks.

ne potential policy benefits of learning about the rbon cycle, such as resolving the difference etween the BOOK and ISAM LUC emissions, ovide a use-based motivation for further inquiry.

otential policy improvements may justify vestments in monitoring systems for global rbon to enhance learning and to detect nexpected changes.

## More Info

ontact jmajkut@princeton.edu for references nd further information.