Realistic Worst Case for a Severe Space Weather Event Driven by a Fast Solar Wind Stream

Tuesday, 12 February 2019: 13:30
Fountain I/II (Westin Pasadena)
Richard B. Horne1, Mark W Phillips1, Sarah A Glauert1, Nigel Peter Meredith2, Alex Hands3, Keith A Ryden3 and Wen Li4, (1)NERC British Antarctic Survey, Cambridge, United Kingdom, (2)British Antarctic Survey, Cambridge, United Kingdom, (3)University of Surrey, Guildford, United Kingdom, (4)Boston University, Boston, MA, United States
Abstract:
Satellite charging is one of the most important risks for satellites on orbit. Satellite charging can lead to an electrostatic discharge resulting in component damage, phantom commands, loss of service and in exceptional cases total satellite loss. Here we construct a realistic worst case for a fast solar wind stream event lasting 5 days or more and use a physical model to calculate the maximum electron flux greater than 2 MeV for geostationary orbit. We find that the flux tends toward a value of 106 cm−2 s−1 sr−1 after 5 days and remains high for another 5 days. The resulting flux is comparable to a 1 in 150-year event found from an independent statistical analysis of electron data. Approximately 2.5 mm of Al shielding would be required to reduce the internal charging current to below the National Aeronautics and Space Administration-recommended guidelines, much more than is currently used. Thus, we would expect many satellites to report electrostatic discharge anomalies during such an event with a strong likelihood of service outage and total satellite loss. We conclude that satellites at geostationary orbit are more likely to be at risk from fast solar wind stream event than a Carrington-type storm.