V31B-4754:
The Easternmost Southwest Indian Ridge: A Laboratory to Study MORB and Oceanic Gabbro Petrogenesis in a Very Low Melt Supply Context

Wednesday, 17 December 2014
Marine Paquet1, Mathilde Cannat1, Cedric Hamelin2 and Daniele Brunelli3, (1)Institut de Physique du Globe de Paris, Paris, France, (2)University of Bergen, Bergen, Norway, (3)University of Modena and Reggio Emilia, Modena, Italy
Abstract:
Our study area is located at the ultra-slow Southwest Indian Ridge, east of the Melville Fracture Zone, between 61 and 67°E. The melt distribution in this area is very heterogeneous, with corridors of ultramafic seafloor where plate separation is accommodated by large offset normal faults [Sauter, Cannat et al., 2013]. These ultramafic corridors also expose rare gabbros and basalts. We use the major and trace elements composition of these magmatic rocks to document the petrogenesis of MORB in this exceptionnally low melt supply portion of the MOR system.

Basalts from the easternmost SWIR represent a global MORB end-member for major element compositions [Meyzen et al., 2003], with higher Na2O and Al2O3 wt%, and lower CaO and FeO wt% at a given MgO. Within this group, basalts from the ultramafic corridors have particularly high Na2O, low CaO and FeO wt%. Best fitting calculated liquid lines of descent are obtained for crystallization pressures of ~8 kbar.

Gabbroic rocks recovered in the ultramafic corridors include gabbros, oxide-gabbros and variably impregnated peridotites. This presentation focuses on these impregnated samples, where cpx have high Mg#, yet are in equilibrium with the nearby basalts in terms of their trace element compositions. Plagioclase An contents vary over a broad range, and there is evidence for opx resorption. These characteristics result from melt-mantle interactions in the axial lithosphere, which may explain several peculiar major element characteristics of the basalts. Similar interactions probably occur beneath ridges at intermediate to slow and ultraslow spreading rates. We propose that they are particularly significant in our study area due to its exceptionnally low integrated melt-rock ratio.