A11C-3025:
When the Fog Clears: Long-Term Monitoring of Fog and Fog-Dependent Biota in the Namib Desert

Monday, 15 December 2014
James Robert Logan V, Gobabeb Research and Training Centre, Walvis Bay, Namibia
Abstract:
The Gobabeb Research and Training Centre in western Namibia is currently undertaking several efforts to enhance long-term atmospheric and fog monitoring in the central Namib Desert and to measure how fog-dependent biota are responding to global change. In an environment that receives regular sea fog and a mean annual rainfall of only 25 mm, Gobabeb is ideally situated to study the drivers and ecological role of fog in arid environments. Currently more than ten meteorological projects perform measurements at or close to Gobabeb. These projects include continuous trace gas measurements, fog isotope sampling, in situ surface radiation measurements, land surface temperature and other satellite validation studies, and multiple aerosol/dust monitoring projects; most of these projects are also components in other global monitoring networks. To these projects, Gobabeb has recently added a network of nine autonomous weather stations spanning the central Namib that will continuously collect basic meteorological data over an area of approximately 70x70 km. Using this data in conjunction with modeling efforts will expand our understanding of fog formation and the linkages between fog and the Benguela Current off Namibia’s coast. Historical weather data from previous meteorological stations and satellite observations will also enable development of a fog time series for the last 50 years to determine climate variability driven by possible changes in the Benguela Current system. To complement these efforts, Gobabeb is also expanding its decades-old ecological research programs to explore the impacts of the fog on the region’s biota at various time and spatial scales. Gobabeb’s long-term, multidisciplinary projects can serve as a prototype for monitoring in other fog-affected systems, together increasing our understanding of coastal fog dynamics, land-atmosphere-ocean connections, and the impacts of fog-related global change.