B13A-0160:
Hypersaline Subsurface Microbial Communities from the Dead Sea Viewed from Their Metagenomes.

Monday, 15 December 2014
Camille Thomas1, Danny Ionescu2 and Daniel Ariztegui1, (1)University of Geneva, Geneva, Switzerland, (2)Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Abstract:
The Dead Sea Deep Drilling Project (DSDDP) is an international research initiative aiming to reconstruct the paleoenvironmental and paleoseismic history of the Dead Sea Basin (DSB) in the Levantine region. Within this framework, analysis of microbial communities intend to qualify the extent of life in this extreme environment, the factors allowing its development and their contribution to the sedimentary and geochemical record. The extreme chemistry of the Dead Sea prevents the use of common in situ imaging techniques leaving little information on the general activity of the subsurface biosphere. Cloning and metagenomic techniques have however been implemented at different levels of a 457 m deep core. Results suggest a differential development or survival of the microbial community along the sedimentary column. Reasons for such distribution remain unclear but cannot only be imparted to salinity. Poorly known communities (e.g. Candidate Divisions MSBL1 and KB1) with strong potential for adaptations to anoxic hypersaline environments are recovered in some intervals. Halobacteria classes generally dominate the assemblages. Metagenomic data allowed characterizing their presence in two evaporitic facies of the core (aragonite at 2.7 m and gypsum at 90.6 m below lake floor), where they exhibit both salt-in and salt-out strategies to cope with the high salinities of the Dead Sea. Metabolisms are also adapted to the high heavy metal concentrations and low nutrient availability in the sediment. Although more work is needed in order to infer the impact of these microorganisms on the sediment and element cycles, indices of methanogenesis, fermentation and sulfate reducing activity imply influence on the carbon and sulfur cycle of the Dead Sea subsurface. This is highlighted by traces of microbial degradation of organic matter viewed under SEM, and by the formation of euhedral Fe-S mineralizations as a result of reduction of sulfur. Overall, this work calls for the importance of unilaterally establishing protocols for the study of geomicrobiological characteristics in ICDP projects. It also demonstrates the input and drawbacks of high-throughput sequencing methods, to study poorly known assemblages in extreme environments.