A Record of the in-Lake and Upland Response to Large Earthquakes, Lake Quinault, Washington

Thursday, 18 December 2014
Elana L Leithold, Karl W Wegmann, Delwayne R Bohnenstiehl and Stephen Andrew Smith, North Carolina State Univ., Raleigh, NC, United States
Lake Quinault, located at the foot of the Olympic Mountains in western Washington, has served as a trap for sediment delivered from the steep, landslide-prone terrain of the Upper Quinault River catchment since its formation between 20,000 and 29,000 years ago. High resolution seismic reflection and sedimentological data reveal a record of both the in-lake and upland response to large earthquakes that have impacted the region during that period.

The sedimentary infill of Lake Quinault is dominated by deposition during river floods, which delivered both abundant siliciclastic sediment and plant debris to the lake bottom. Minor episodes of soft-sediment deformation at the lake margins are recorded, and based on a preliminary age model, may be related to known earthquakes, including the well documented 1700 AD Cascadia megathrust event. By far the most dramatic event in the middle-late Holocene record of Lake Quinault, however, is the lateral spreading and degassing of sediments on its gentle western slopes during an event ca. 1300 years ago. Abundant gas chimneys are visible in seismic stratigraphic profiles from this part of the lake. Several of these gas chimneys extend from the limit of seismic penetration at 15-20 m depth in the lake bed upward to the lake bottom where they terminate at mounds with evidence for active venting. Most of the gas chimneys, however, end abruptly around 2.5 m beneath the lake floor and are overlain by parallel, continuous reflectors. Piston cores show soft-sediment deformation at this level, and abrupt shifts in density, magnetic susceptibility, flood layer thickness, particle size, color, and inorganic geochemistry. We interpret these shifts to mark the contact between sediments that experienced shaking and degassing during a strong earthquake event and overlying sediments that have not experienced comparable seismicity. The earthquake evidently strongly affected the Upper Quinault River catchment, causing increased sediment input to the lake and stepwise progradation of the delta at its eastern end. Our results suggest that similar events may have occurred previously in the lake, at a frequency of several thousands of years, and may reflect a response to large earthquakes generated on nearby crustal faults rather than at the subduction interface.