Localized Slip and Distributed Deformation in Oblique Settings: The Example of the Denali Fault System, Alaska

Monday, 15 December 2014
Amaury Vallage1, Maud Deves1, Yann Klinger1, Geoffrey C P King1 and Natalia A Ruppert2, (1)Institut de Physique du Globe de Paris, Paris, France, (2)University of Alaska Fairbanks, Fairbanks, AK, United States
Earthquakes occurring in oblique tectonic settings often partition between several faults that accommodate different components of the total motion. The 2002 Mw 7.9 Denali strike-slip earthquake, which azimuth varies by more than 50° over the 341 km total rupture length, offers a unique opportunity to look at partitioning in details, thanks to a large seismological dataset. Using a kinematic model that incorporates the obliquity of the plate-motion direction relative to the local fault azimuth, we show that the co-seismic deformation is consistent with the general northwestward displacement of the Wrangell block relative to stable North America. Hence we quantify the efficiency of the Denali fault to accommodate such oblique far field tectonic conditions by defining a coefficient of accommodation Ca, and we evaluate how much remains to be accommodated by distributed deformation off the strike-slip fault. We represent the distributed deformation using strain rosette for a catalog of 735 focal mechanisms between 1987 and 2011. We show that in oblique settings, such as in the Denali case, the aftershocks and the background seismicity are organized to accommodate the deformation that is not localized on the Denali strike-slip fault during the main earthquakes. Actually the westward increase of the obliquity increases the amount of such deformation accommodated through distributed thrust faults, leading to the westward widening of the Alaska Range.

In addition we use a simple 2D boundary element elastic model to investigate the difference between geodetic data, showing a rotation of the block south of the fault, and our oblique boundary conditions. We show that it is possible to reproduce the rotation of such block while it is subjected to a northwestward oblique displacement applied on the curved Denali fault system.