V43G-08:
Evaluating the Influence of Chemical Reactions on Wellbore Cement Integrity and Geochemical Tracer Behavior in Hydraulically-Fractured Shale Formations

Thursday, 18 December 2014: 3:25 PM
Circe Verba1, Athena Lieuallen1, Jonathon Yang2, Marta E Torres3 and Alexandra Hakala1, (1)National Energy Technology Laboratory Pittsburgh, Pittsburgh, PA, United States, (2)Oregon State Univ, Corvallis, OR, United States, (3)Oregon State Univ, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR, United States
Abstract:
Ensuring wellbore integrity for hydraulically-fractured shale reservoirs is important for maintaining zonal isolation of gases and fluids within the reservoir. Chemical reactions between wellbore cements, the shale formation, formation fluids, and fracturing fluids could affect the ability for cement to form an adequate seal. This study focuses on experimental investigations to evaluate how cement, rock, brines, and fracturing fluids react under conditions similar to the perforated zone associated with the Marcellus shale (Greene County, Pennsylvania). Two pressure/temperature regimes were investigated- moderate (25 MPa, 50oC) and high (27.5 MPa, 90oC). Shale collected from the Lower Marcellus section was encased in Class A cement, cured for 24 hours, and then exposed to simulated conditions in experimental autoclave reactors. The simulated formation fluid was a synthetic brine, modeled after a flowback fluid contained 187,000 mg/l total dissolved solids and had a pH of 7.6. The effect of pH was probed to evaluate the potential for cement reactivity under different pH conditions, and the potential for contaminant or geochemical tracer release from the shale (e.g. arsenic and rare earth elements). In addition to dissolution reactions, sorption and precipitation reactions between solutes and the cement are being evaluated, as the cement could bond with solute-phase species during continued hydration. The cements are expected to show different reactivity under the two temperature conditions because the primary cement hydration product, calcium silicate hydrate (C-S-H) is heavily influenced by temperature. Results from these experimental studies will be used both to inform the potential changes in cement chemistry that may occur along a wellbore in the hydraulically-fractured portion of a reservoir, and the types of geochemical tracers that may be useful in tracking these reactions.