A43N-05:
Aerosol-Cloud Interactions in Ship Tracks Using Terra MODIS/MISR

Thursday, 18 December 2014: 2:40 PM
YI-Chun Chen1, Matthew Christensen2, David J Diner3, Michael J Garay2 and David L Nelson1, (1)NASA Jet Propulsion Laboratory, Pasadena, CA, United States, (2)Jet Propulsion Laboratory, Pasadena, CA, United States, (3)JPL, Pasadena, CA, United States
Abstract:
Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds under different cloud types and environmental conditions. Taking advantage of the high spatial resolution multiangle observations uniquely available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine the cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were applied. Under open cell cloud structure, the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+27%), cloud top height (+11%), and cloud albedo (+40%) for open cell clouds, whereas under closed cell clouds, little changes in cloud properties were observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed has been used to derive cloud top divergence. Statistically averaging the results from many plume segments to reduce random noise, we have found that in ship-polluted clouds there is stronger cloud top divergence, and in nearby unpolluted clouds, convergence occurs and leads to downdrafts, providing observational evidence for cloud top entrainment feedback. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties of aerosol indirect forcing.

Reference:

Chen, Y.-C. et al. Occurrence of lower cloud albedo in ship tracks, Atmos. Chem. Phys., 12, 8223-8235, doi:10.5194/acp-12-8223-2012, 2012.