S51A-4442:
Ground Motion Attenuation and Shear-Wave Splitting Analyses for the November 2011 M5.7 Prague, Oklahoma Earthquake
Abstract:
During November 2011, three M≥5.0 earthquakes and thousands of aftershocks occurred on and near the Wilzetta fault, a structurally complex ~200 km long, Pennsylvanian-aged fault near Prague, Oklahoma, in close proximity to several active wastewater injection wells. All three M≥5.0 earthquakes had strike-slip mechanisms consistent with rupture on three independent focal planes, suggesting activation of three different strands of the Wilzetta fault.Wastewater injection can cause a buildup of pore fluid pressure along the fault, which decreases the fault strength and may induce earthquakes. Based on the proximity of earthquakes to active fluid injection wells, the unilateral progression of aftershocks away from the initial M5.0 event, and shallow earthquake depths, Keranen et al. [2013] concluded that fluid injection was responsible for inducing the first M5.0 event. Furthermore, Sumy et al. [2014] found that the initial M5.0 event increased the Coulomb stress in the region of the M5.7 mainshock, triggering a cascade of earthquakes along the Wilzetta fault. Thus, while nearby wastewater injection directly induced the initial M5.0 event, this earthquake triggered successive failure along the Wilzetta fault; however, it remains unclear if the additional ruptured fault strands are also influenced by fluid injection.
In this study, we explore instrumental ground motions and shear-wave splitting of the November 2011 Prague, Oklahoma sequence, in order to construct ground motion prediction equations (GMPEs) and understand the local stress regime, respectively. We examine ~1,000 earthquakes recorded by a total of 47 seismometers, located within ~150 km of the Wilzetta fault. With respect to GMPEs, initial results suggest that the ground motions are smaller than similar magnitude earthquakes of natural/tectonic origins, and these lower intensities may be a result of lower stress drops [e.g. Hough, 2014]. With respect to shear-wave splitting, we examine quality graded fast polarization and delay time measurements and observe fast directions oriented roughly E-W across the study area, which is consistent with the maximum principal stress of N80E determined from the focal mechanism inversion of Sumy et al. [2014].