T51B-4629:
Trench Advance By the Subduction of Buoyant Features - Application to the Izu-Bonin-Marianas Arc

Friday, 19 December 2014
Saskia D B Goes, Imperial College London, London, SW7, United Kingdom, Loic Fourel, Institut de Physique du Globe de Paris, Paris, France and Gabriele Morra, University of Louisiana at Lafayette, Lafayette, LA, United States
Abstract:
Most subduction trenches retreat, not only today but throughout the Cenozoic. However, a few trenches clearly advance during part of the evolution, including Izu-Bonin Marianas (IBM) and Kermadec. Trench retreat is well understood as a basic consequence of slab pull, but it is debated what causes trench advance. The IBM trench underwent a complex evolution: right after its initiation, it rotated clockwise, leading to very fast retreat in the north and slow retreat in the south. But since 10-15 Ma, IBM trench motions have switched to advance at the southern end, and since 5 Ma also the northern end is advancing. Based on 2-D subduction models, it has been proposed proposed that the change in age of the subducting plate at the IBM trench (from 40-70 m.y. at the initiation of the trench 45 m.y. ago to 100-140 m.y. lithosphere subducting at the trench today) and its effect on plate strength could explain the transition from trench retreat to trench advance, and that the age gradient (younger in the north and older in the south) could explain the rotation of the trench. However, with new 3-D coupled fluid-solid subduction model where we can include such lateral age gradients, we find that this does not yield the observed behaviour. Instead, we propose an alternative mechanism, involving the subduction of the buoyant Caroline Island Ridge at the southern edge of the Mariana trench and show that it can explain both trench motion history and the current morphology of the IBM slab as imaged by seismic tomography.