GP41A-3615:
Rotational Remanent Magnetization (RRM) to Identify Pyrrhotite in Natural Iron-Sulfide-Bearing Samples

Thursday, 18 December 2014
Sarah P Slotznick1, Joseph L Kirschvink1,2, Woodward W Fischer1 and Samuel M Webb3, (1)California Institute of Technology, Pasadena, CA, United States, (2)Earth-Life Science Institute, Meguro, Japan, (3)SLAC National Accelerator Laboratory, Menlo Park, CA, United States
Abstract:
Pyrrhotite has been known for several decades to have anomalous demagnetization behavior when using tumbling AF techniques. This was quantified by Thomson (1990) to show that pyrrhotite can acquire rotational remanent magnetization (RRM) similar to the more intensely-studied iron sulfide, greigite. Use of RRM as an identification tool in natural samples has not become standard practice, perhaps due to the decrease in use of tumbling AF techniques. However, using the 2G SQuID magnetometer with in-line AF/ARM coils and RAPID automated protocols (Kirschvink et al. 2008), one can easily produce and measure RRM. This method of measuring RRM has been used to identify greigite (Suzuki et al. 2006), but not pyrrhotite. We present room temperature RRM measurements for samples spinning from -20 to +20 rev/sec, perpendicular to peak AF fields of 90mT (at 950 Hz) in iron-sulfide-bearing shales, argillites, and carbonates throughout Earth History (Miocene, Cretaceous, Mesoproterozoic, Late Archean). Presence of pyrrhotite was confirmed using AF demagnetization of NRM (GRM), IRM acquisition/AF demagnetization (Cisowski plots), Kappabridge thermal susceptibility, ultra-high resolution scanning SQuID microscopy (UHRSSM), and/or X-ray absorption near edge spectroscopy (XANES)/multiple energy X-ray fluorescence (XRF) imaging. Although the total absence of pyrrhotite cannot be proven, the same techniques were applied to rocks that do not gain RRM easily to identify their iron sulfides and ferromagnetic minerals, and no magnetic iron sulfides were found. The RRM signal for pyrrhotite is distinct from that of greigite, suggesting it could be used as a tool for distinguishing these magnetic iron sulfides from each other. Further work on room temperature RRM could define a unique non-destructive rock magnetic test for pyrrhotite.