SA21A-4042:
Updated Global Data from the Guvi Instrument: New Products, Updated Calibration, and a New Web Interface

Tuesday, 16 December 2014
Robert K Schaefer1, Larry J Paxton1, Giuseppe Romeo2, Brian C Wolven1, Yongliang Zhang1 and Joseph Comberiate3, (1)The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States, (2)Johns Hopkins University Applied Physics Lab, Abingdon, MD, United States, (3)JHU/APL, Laurel, MD, United States
Abstract:
With it's high inclination orbit, GUVI provides global coverage of the ionosphere/thermosphere system, revisiting each polar region 15 times a day. The GUVI instrument has long been a resource for the ITM community with a panoply of data products available from the GUVI website (http://guvi.jhuapl.edu). GUVI is in a high inclination orbit and so provides coverage of both hemispheres. With the release last year of the data products from the DMSO/SSUSI instrument, particularly more detailed auroral zone products (Q, E0, Hemispheric Power, discrete auroral arcs, proton precipitation regions), new equatorial ionospheric products (3D electron densities, bubbles), a whole new set of UV data products has become available. SSUSI are available from http://ssusi.jhuapl.edu. To leverage the experience and knowledge gained from running all of these instruments we have adapted the SSUSI products so they can be made from GUVI telemetry. There are now updated versions of GUVI legacy products as well as brand new products. In addition, better on-orbit calibration techniques developed for SSUSI have now been applied to the GUVI instrument calibration - there is now a common set of software for calibrating both instruments. With a common data format, calibration, and product definition, the data from all SSUSI and GUVI instruments can now be easily combined to get multiple instruments to cover the hemispheres to do a variety of global studies. In addition, the GUVI spectrographic mode data provides great detail about spectrographic features (e.g. O/N2 ratios, NO band emission) that are important for understanding dynamical processes in the thermosphere. A new version of the GUVI website (with the same interface as the SSUSI website) has been launched from guvi.jhuapl.edu to showcase the legacy products made with the new calibration and also highlight the newly developed products for the GUVI imaging and spectrographic modes.