Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity

Thursday, 18 December 2014
Wei Yang, ITP Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Based on glacio-meteorological measurements and mass-balance stake records during the five-year period of 2005–2010 on the southeast Tibetan Plateau, an energy-mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glacio-meteorological datasets. The good agreement between the snowpack height/mass balance simulations and the in-situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy-mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the ‘ideal’ climatic regime leading to zero mass balance, with its annual mass balance of approximately -0.9 m w.e. during 2005–2010. Climatic sensitivity experiments were also carried out to interpret the observed mass-balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such “spring-accumulation type” glaciers are presumed to be distributed mainly within a narrow wedge-shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balanceare also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season and the Indian monsoon in the summer season.