P51B-3946:
Experiments with Orbit-Spin Coupling Accelerations in a Mars General Circulation Model

Friday, 19 December 2014
Michael A Mischna, NASA Jet Propulsion Laboratory, Pasadena, CA, United States, James H Shirley, JPL, Pasadena, CA, United States and Claire E Newman, Ashima Research, Pasadena, CA, United States
Abstract:
We explore the hypothesis that year-to-year differences in the orbital angular momentum of Mars [Shirley, this meeting] can contribute to the interannual variability of the Mars climate. For much of the year, the seasonal cycle of the atmospheric circulation is highly repeatable, being driven by global insolation patterns; however, during southern summer (the ‘dust storm season’), the atmosphere is more highly variable from year-to-year. The processes underlying this variability are not yet clear. As a means of addressing this uncertainty, we explore the possibility that the root cause may be extrinsic to the atmospheric system itself. Recent work has uncovered a mechanism for a coupling of Mars’ orbital and rotational motions that yields heretofore-unsuspected accelerations on the martian atmosphere. These accelerations, while instantaneously small (on the order of 10-5 ms-2), may cumulatively yield wind velocity changes of several 10s of ms-1 on seasonal timescales.

Here, we use the MarsWRF general circulation model to examine the effect of these newly identified coupling term accelerations (CTAs) on Mars’ atmospheric circulation. The accelerations vary significantly with time, and exhibit variable phasing with respect to Mars’ annual cycle. We have run MarsWRF with the inclusion of the additional accelerations for a range of years from MY -16 (1924) to MY 34 (2018). We find that interannual variability in the model output derives largely from differences in the sign and magnitude of the CTAs, confirming one of the predictions of the physical hypothesis. During certain seasons the overall circulation is strengthened by the CTAs, while at other times the CTAs disappear. Resultant surface wind stresses, which are a function of the near-surface winds, are enhanced during periods when the CTAs attain maximum values. We have begun to explore the relationship between the CTAs and the martian dust cycle through its influence on these surface stresses.