Predicting ICME Magnetic Fields with a Numerical Flux Rope Model

Tuesday, 16 December 2014
Ward Manchester, Bart van der Holst and Igor Sokolov, University of Michigan, Ann Arbor, MI, United States
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these ICME magnetic fields is essential to the progress of heliospheric science and space weather prediction. We combine observations made by different observing techniques of CME events to develop a numerical model capable of predicting the magnetic field of interplanetary coronal mass ejections (ICMES). Photospheric magnetic field measurements from SOHO/MDI and SDO/HMI are used to specify a coronal magnetic flux rope that drives the CMEs. We examine halo CMEs events that produced clearly observed magnetic clouds at Earth and present our model predictions of these events with an emphasis placed on the z component of the magnetic field. Comparison of the MHD model predictions with coronagraph observations and in-situ data allow us to robustly determine the parameters that define the initial state of the driving flux rope, thus providing a predictive model.