EP53A-3630:
Connecting Surface Planting with Subsurface Erosion Due to Groundwater Flow

Friday, 19 December 2014
Melissa Reardon, University of Virginia Main Campus, Charlottesville, VA, United States and Joanna C Curran, Northwest Hydraulic Consultants, Seattle, WA, United States
Abstract:
Bank erosion and failure is a major contributor of fine sediment to streams and rivers, and can be driven by subsurface flow. In restoration projects, vegetation is often planted on banks to reduce erosion and stabilize the banks. However, the relationship between subsurface flow, erosion and vegetation remains somewhat speculative. A comparative study quantified the effect of surface planting on subsurface erosion and soil strength. Six 32-gallon containers were layered with a sandy loam overlying a highly conductive sand layer and a confining clay. Three treatments were applied in pairs: switchgrass (Panicum virgatum L.), sod (turf-type tall fescue and Kentucky bluegrass mix), and no vegetation. After a vegetation establishment period, the 2, 10, and 100 year rainfalls were simulated. Samples collected from ports in the containers were analyzed for subsurface drainage volume and suspended sediment concentration. After all rainfall simulations, a sediment core was taken from each container to measure shear strength and root density.

Results indicate the relative benefits of vegetative planting to reduce subsurface erosion during storms and enhance soil strength. Switchgrass reduced the total amount of sediment removed from containers during all three storms when compared to the sod and during the 10 and 100 year storms when compared to the bare ground. Results from the volume analysis were more variable. Switchgrass retained the greatest volume of water from the 100 year storm event, but also released the largest fraction of water in the 2 and 10 year storms. Both sod and switchgrass planting considerably increased the time required for the soil samples to fail despite reducing the shear stress at failure. Where switchgrass grew long, woody roots, the sod developed a dense mat of interconnected thin roots. We suspect the different root patterns between sod and switchgrass to be a dominant factor in the response of the different containers.