Seismoelectric Beamforming Imaging Technique Proof of Concept By Numerical Modeling and Experimental Measurements

Tuesday, 16 December 2014
Paul El Khoury, Andre Revil, Paul C Sava, Minsu Cha and Thomas Planes, Colorado School of Mines, Golden, CO, United States
The electrical current density generated by the propagation of a seismic wave at the interface characterized by a rap in the electrical conductivity and/or the permeability produces an electrical field of electrokinetic nature that can be measured remotely with a signal-to-noise ratio depending on the background noise and signal attenuation. “Seismoelectric Beamforming” is a new imaging technique based on scanning a porous media using appropriately delayed in time seismic sources to focus the energy on a regular grid and measure the associate relatively high electric field remotely. This method can be used to image heterogeneities with a high resolution. We are presenting some numerical modeling and preliminary laboratory measurements in a simple tank experiment to validate the scanning approach. The experiment consists of a water-filled bucket in which a cylindrical sandstone core sample is set up vertically crossing the water column. We move the hydrophone at various locations in the bucket and then focus the seismic energy in order to scan the medium and determine the geometry of the porous plug. In the numerical modeling analysis, we will show the efficiency of the seismoelectric beamforming technique in locating and imaging the position of the core sample.