OS11A-1250:
Current Measurements and Overwash Monitoring Using Tilt Current Meters in Three Coastal Environments

Monday, 15 December 2014
Nicholas S Lowell1, Christopher R Sherwood2, Thomas M Decarlo3 and Jeff R Grant1, (1)Lowell Instruments LLC, Engineering, North Falmouth, MA, United States, (2)Coastal and Marine Science Center Woods Hole, USGS, Woods Hole, MA, United States, (3)WHOI, Woods Hole, MA, United States
Abstract:
Tilt Current Meters (TCMs) provide accurate, cost effective measurements of near-bottom current velocities. Many studies in coastal environments require current measurements, which are frequently made with Acoustic Doppler Profilers (ADPs). ADPs are expensive, however, and may not be suitable for locations where there is significant risk of damage, loss, or theft or where a large spatial array of measurements is required. TCMs, by contrast, are smaller, less expensive, and easier to deploy. This study tested TCMs in three sites to determine their suitability for use in research applications. TCMs are based on the drag-tilt principle, where the instrument tilts in response to current. The meter consists of a buoyant float with an onboard accelerometer, three-axis tilt sensor, three-axis magnetometer (compass), and a data logger. Current measurements are derived by post processing the tilt and compass values and converting them to velocity using empirical calibration data. Large data-storage capacity (4 GB) and low power requirements allow long deployments (many months) at high sample rates (16 Hz). We demonstrate the utility of TCM current measurements on a reef at Dongsha Atoll in the South China Sea, and in Vineyard Sound off Cape Cod, where the TCM performance was evaluated against ADP measurements. We have also used the TCM to record waves during an overwash event on a Cape Cod barrier beach during a winter storm. The TCM recorded waves as they came through the overwash channel, and the data were in agreement with the water-level record used as a reference. These tests demonstrate that TCMs may be used in a variety of near shore environments and have the potential to significantly increase the density of meters in future studies were current measurements are required.