DI41A-4320:
Can Suspended Iron-Alloy Droplets Explain the Origin, Composition and Properties of Large Low Shear Velocity Provinces?

Thursday, 18 December 2014
Zhou Zhang, University of Minnesota Twin Cities, Minneapolis, MN, United States, Susannah M Dorfman, EPFL Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, Jabrane Labidi, Carnegie Institution for Science, Geophysical lab, Washington, DC, United States, Shuai Zhang, University of California Berkeley, Berkeley, CA, United States, Michael Manga, Univ of California Berkeley, Berkeley, CA, United States, Lars Stixrude, University College London, London, United Kingdom, William F McDonough, Univ Maryland, College Park, MD, United States and Quentin C Williams, University of California Santa Cruz, Santa Cruz, CA, United States
Abstract:
The enigmatic large low shear velocity provinces (LLSVPs) identified by seismic tomography at the base of the Earth’s mantle have been proposed to be reservoirs of primordial mantle composition tapped by hot spot volcanism. The LLSVPs are characterized by anomalously low shear wave speed, VS, slightly elevated bulk sound speed, VB, and high density, ρ, in piles as thick as 1000 km above the core-mantle boundary. This combination of properties could be explained by a few percent dense melt, but the solidus of the lower mantle silicate and oxide assemblage may be too high to produce melt over the large extent of these regions. Iron-rich sulfur-bearing alloy may be molten at the conditions of the LLSVPs and ~1-2% of this component could satisfy both constraints on VS and ρ. An Fe alloy phase in the LLSVPs also has the potential to explain geochemical anomalies associated with hot spot volcanism, and its existence can be constrained by geochemical mass balance. Primordial noble gases such as 3He would be preferentially dissolved in Fe-rich melt rather than crystalline silicates. The reconstructed abundances of the moderately siderophile/chalcophile elements S, Cu and Pb in iron-alloy-bearing LLSVPs do not exceed predicted losses from volatilization, though this depends on the S-content of the alloy. The alloy phase would also be expected to incorporate W, and W isotope anomalies associated with hot spots are thus expected to have important implications for the timing of LLSVP formation.

We have developed a model, via CIDER-2014, for the origin and properties of LLSVPs incorporating geochemistry, mineral physics, and fluid dynamic constraints on the generation, capture, and thermoelastic properties of Fe-rich melt droplets. The solidification of a basal magma ocean would produce both solid silicates and metallic melt. The bulk of the alloy generated by this process would sink to merge with the core. However, once the density of the remnant liquid exceeds that of the solid, newly-formed crystals floating at the crystallization front may trap droplets of Fe-rich melt as inclusions or at grain boundaries. We find that a mixture of mantle silicates and ~1-2% molten Fe-rich droplets matches constraints on density and seismic velocities and could host the hidden 3He and other elements of the primordial mantle reservoir.