S21A-4388:
New Perspective of Tsunami Deposit Investigations: Insight from the 1755 Lisbon Tsunami in Martinique, Lesser Antilles.

Tuesday, 16 December 2014
Jean Roger, GMER Etudes Marines, Saint-Francois, Guadeloupe, Valerie Clouard, Institut de Physique du Globe de Paris, Observatoire Volcanologique et Sismologique de la Martinique, Paris, France and Emmanuel Moizan, Institut de Recherche en Archéologie Préventive, Centre de recherche archéologique de Poitiers, Poitiers, France
Abstract:
The recent devastating tsunamis having occurred during the last decades have highlighted the essential necessity to deploy operationnal warning systems and educate coastal populations. This could not be prepared correctly without a minimum knowledge about the tsunami history. That is the case of the Lesser Antilles islands, where a few handfuls of tsunamis have been reported over the past 5 centuries, some of them leading to notable destructions and inundations. But the lack of accurate details for most of the historical tsunamis and the limited period during which we could find written information represents an important problem for tsunami hazard assessment in this region. Thus, it is of major necessity to try to find other evidences of past tsunamis by looking for sedimentary deposits. Unfortunately, island tropical environments do not seem to be the best places to keep such deposits burried. In fact, heavy rainfalls, storms, and all other phenomena leading to coastal erosion, and associated to human activities such as intensive sugarcane cultivation in coastal flat lands, could caused the loss of potential tsunami deposits. Lots of places have been accurately investigated within the Lesser Antilles (from Sainte-Lucia to the British Virgin Islands) the last 3 years and nothing convincing has been found. That is when archeaological investigations excavated a 8-cm thick sandy and shelly layer in downtown Fort-de-France (Martinique), wedged between two well-identified layers of human origin (Fig. 1), that we found new hope: this sandy layer has been quickly attributed without any doubt to the 1755 tsunami, using on one hand the information provided by historical reports of the construction sites, and on the other hand by numerical modeling of the tsunami (wave heights, velocity fields, etc.) showing the ability of this transoceanic tsunami to wrap around the island after ~7 hours of propagation, enter Fort-de-France's Bay with enough energy to carry sediments, and inundate it. Helping with this discovery, we conclude that tsunami markers could have been simply buried and preserved by human earthmoving, leveling and other building activities. It also shows how a collaborative research involving geology and archaeology could chart a new course to greatly improve our tsunami databases.