Correlation Detection Based on the Reconstructed Excitation Signal of Electromagnetic Seismic Vibrator

Monday, 15 December 2014
Zhichao Yang, Tao Jiang, Xuechun Xu and Haiqing Jia, JLU Jilin University, Changchun, China
Correlation detection method is generally used to detect seismic data of electromagnetic seismic vibrator, which is widely applicated for shallow mineral prospecting. By analyzing field seismic data from electromagnetic and hydraulic seismic vibrators in mining area, we find when media underground is complex or the base-plate of vibrator is coupled poorly with ground, there is a 9.30 m positioning precision error and false multiple waves in the electromagnetic vibrator data reference to hydraulic vibrator data. The paper analyzes the theoretical reason of above problems by studying how the signal of electromagnetic vibrator is excited, then proposes a new method of correlation detection based on the reconstructed excitation signal (CDBRES). CDBRES includes following steps. First, it extracts the direct wave signal from seismometer near base-plate of electromagnetic vibrator. Next, it reconstructs the excitation signal according to the extracted direct wave. Then, it detects the seismic data using cross-correlation with the reconstructed excitation signal as a reference. Finally, it uses spectrum whitening to improve detection quality. We simulate with ray-tracing method, and simulation results show that the reconstructed excitation signal is extremely consistence with the ideal excitation signal, the correlation coefficient between them is up to 0.9869. And the signal of electromagnetic vibrator is detected correctly with CDBRES method. Then a field comparison experiment between hydraulic vibrator MiniVib T15000 and electromagnetic vibrator PHVS 500 was carried out near a copper and nickel deposit area. Their output force are 30000N and 300N, respectively. Though there is a great output force difference, the detection result of PHVS 500 using CDBRES method is still consistent with MiniVib T15000. Reference to the MiniVib T15000, the positioning error of PHVS 500 is only 0.93m in relatively stronger noise level. In addition, false multiple waves are invisible. In summary, CDBRES method can be used for high precision detection of electromagnetic vibrator in mining area and complex media prospecting. It is of great significance in high resolution seismic exploration too.