NS42A-03:
A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

Thursday, 18 December 2014: 10:50 AM
Shida Sun1, Chao Chen1,2, Haoran WANG1 and Qiuge Wang1, (1)China University of Geosciences Wuhan, Wuhan, China, (2)Hubei Subsurface Multi-scale Imaging Lab (SMIL), China University of Geosciences Wuhan, Wuhan, China
Abstract:
The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn’t need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties.

The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility.

Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well.

References

Paoletti, V., Ialongo, S., Florio, G., Fedi, M. & Cella, F., 2013. Self-constrained inversion of potential fields, Geophys J Int.

This research is supported by the Fundamental Research Funds for Institute for Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (Grant Nos. WHS201210 and WHS201211).