GP11B-07:
The Role of Authigenic (pigment) Hematite in Controlling the Remanence, Rock Magnetic, and Magnetic Fabric Properties of Red Beds--If You Have Seen One Red Bed, You Certainly Have Not Seen Them All!

Monday, 15 December 2014: 9:30 AM
John W Geissman, University of Texas at Dallas, Dallas, TX, United States
Abstract:
Discussion continues on the relative role of authigenic (pigment) fine-grained hematite, relative to detrital, considerably coarser specular hematite (specularite) as a carrier of geologically meaningful remanence, as a determinant of rock magnetic properties, and as a contributor to magnetic fabrics in red beds. For one, many workers commonly assume that the laboratory unblocking temperature spectra (Tlub) of a red bed dominated by authigenic pigment does not reach the maximum Tlub as approximated by the Neel temperature (~948 K) because of the ultra fine grain size of the pigment. This issue was discussed as recently as the IRM Santa Fe meeting in late June, 2014. Many laboratories routinely utilize chemical demagnetization in concert with progressive thermal demagnetization to attempt to assess the relative role of pigment vs. detrital hematite. However, the utility of chemical demagnetization has been long challenged. In studying the anisotropy of magnetic susceptibility and remanence in red beds, recent work has considered separating the contributions of both types of hematite to the fabric signal. Three different red bed “types” (siltstones of the Triassic Chugwater Group, Gros Ventre Range, Wyoming; mudrocks of lowermost Triassic Quartermaster Formation, west Texas; and siltstones to medium sandstones of Upper Cretaceous age, northwest Vietnam) are used to evaluate the effects of varying contributions by pigment hematite to remanence, rock magnetic, and magnetic fabric properties. All rocks are well-characterized petrographically, so that the modal abundance of detrital oxides is known. The Chugwater siltstones are notable because of a relatively low Tlub spectra (below about 620o C), with no evidence of a low coercivity cubic phase. Rock magnetic and magnetic fabric properties are monitored as a function of progressive chemical demagnetization to further elucidate the role of hematite pigment in rocks that have contributed much to the paleomagnetic record of Earth.