Field Observation of Heterogeneous Formation of Secondary Organic Aerosols on Asian Mineral Dust Surfaces

Monday, 15 December 2014
Gehui Wang, CAS Chinese Academy of Sciences, Beijng, China
This study investigated the heterogeneous formation mechanism of secondary organic aerosols (SOA) on dust surfaces by characterizing molecular compositions and size distributions of dicarboxylic acids, keto-carboxylic acids, a-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) in the urban atmosphere of Xi’an, China during dust storm periods and comparing with those in non-dust storm periods. In the presence of a dust storm, all the above mentioned SOA species in Xi’an are predominantly enriched on coarse particles (>2.1 µm). Oxalic acid well correlated with NO3- (r2=0.72, p<0.01) rather than SO42-. This phenomenon differs greatly from the observed particles during a non-dust storm period, which is characterized by an enrichment of the SOA on fine particles (<2.1 µm) with a strong correlation between C2 and SO42-. We propose a three-step formation pathway to explain these observations as follows. First, nitric acid and nitrogen oxides react with dust to form a liquid film on the surface via water vapor-absorption of calcium nitrate. Second, gaseous Gly and mGly partition into the aqueous-phase. Finally, the aqueous-phase Gly and mGly oxidize into glyoxylic acid (wC2), followed by a further oxidation into C2. To the best of our knowledge, we found for the first time the enrichments of glyoxal (Gly) and methylglyoxal (mGly) on dust surfaces. Our data indicate a more critical role of nitrate than sulfate in the heterogeneous formation process of SOA on dust surfaces. Mass ratio of C2 to wC2 was found to be higher in coarse particles than in fine particles during the dust storm events, which is due to low acidity condition of large particles that is favorable for conversion of wC2 to C2.