V11D-01:
The effects of sulfur, silicon, water, and oxygen fugacity on solubility and metal-silicate partitioning of carbon at 3 GPa and 1600 °C - Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

Monday, 15 December 2014: 8:00 AM
Yuan Li, Rajdeep Dasgupta and Kyusei Tsuno, Rice University, Houston, TX, United States
Abstract:
The partition coefficient of carbon between Fe-rich alloy melt and silicate melt,
 and solubility of C-O-H volatiles in reduced silicate melts are key to understand the origin and distribution of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 °C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (~5.6 wt%) in alloy melt, whereas the presence of 0-10 wt% silicon decreases it from ~5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt is strongly controlled by fO2 and the bulk water content. Decreasing fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopy of silicate glasses show that the carbon species is mostly methane, confirmed by the positive correlation between carbon and non-hydroxyl hydrogen in silicate melt. The decreases from 4600 to 180 with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in metallic alloy melt also decreases .

Our results show that fO2 and silicate melt bulk water contents play an important role in the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon to the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable >1000, most carbon would also enter the segregating core. Finally, the predominance of methane in reduced silicate melt with fO2 below IW-1 also indicates that degassing of a hydrous, solidifying MO may have created a reduced early atmosphere, and degassing from lunar and Martian mantle may have released much more methane than carbon dioxide.