Simulating Feedbacks Between Stratocumulus Cloud Dynamics, Microphysics and Aerosols Over Large Scales.

Thursday, 18 December 2014: 3:10 PM
Daniel Peter Grosvenor1, Paul Field1,2, Adrian A Hill2 and Ben J Shipway2, (1)University of Leeds, Leeds, United Kingdom, (2)United Kingdom Met Office, Exeter, United Kingdom
The response of a stratocumulus cloud deck to aerosols involves a complex interplay between cloud microphysics, precipitation, cold pool dynamical interactions between neighboring cells, cloud top entrainment and the boundary layer structure over larger scales. Such feedbacks are thought to be involved in, for example, the formation of Pockets of Open Cells (POCs), which represent a large albedo change relative to the closed cell regime. However, they are not represented in GCM parameterizations and have also so far have not been simulated adequately in mesoscale models, which is a necessary step in order to develop parameterizations. We will show results from high resolution (<1 km) mesoscale simulations of stratocumulus using a new multi-moment microphysics scheme coupled to the UK Met Office Unified Model. The new scheme represents the processing of aerosol by clouds, allowing examination of the feedbacks between cloud dynamics, microphysics and aerosol. Results will be shown for domains of order 1000km that are driven by meteorological analysis, allowing realistic forcing and large scale interactions, in contrast to idealized LES simulations. Additionally, a representation of sub-grid vertical velocities based on resolved motions has been implemented, which will allow consistent droplet activation across a range of horizontal model resolutions. A cloud scheme to account for sub-grid humidity variability was also added and was found to be necessary in order to simulate realistic clouds.