V43A-4849:
Spatial and Temporal Evolution of Eruptive Activity in a Youthful Extensional Setting: the Case of the Nyamulagira Volcanic Field, Western Branch of the East African Rift

Thursday, 18 December 2014
Benoit Smets1, Matthieu Kervyn2, Nicolas d'Oreye1 and François Kervyn3, (1)European Center for Geodynamics and Seismology, Walferdange, Luxembourg, (2)Vrije Universiteit Brussels, Brussels, Belgium, (3)Royal Museum for Central Africa, Tervuren, Belgium
Abstract:
Nyamulagira is the westernmost volcano of the Virunga volcanic province, in the western branch of the East African Rift. This shield volcano is one of the most active African volcanoes with one eruption every 1-4 year(s). Nyamulagira’s eruptions usually occur along the flanks of the main edifice and in the lava plain, producing pyroclastic cone(s) and 10-20 km-long lava flows. Between 1913 and 1938, the activity was however restricted to the summit caldera, where lava fountains progressively gave birth to a lava lake, which disappeared in 1938 during the partial collapse of the summit caldera and the onset of a 2.5 years-long flank eruption. The location of flank eruptions and the orientation of the eruptive fissures are strongly influenced by the edifice loading, and by the NNW-SSE fracture network that crosses the main edifice and link it to the neighboring Nyiragongo volcano. But rift fault can also influence fissure orientations and cone alignments, especially for distal events. The flank eruptions typically have similar characteristics, lasting few days to few weeks, with an average of 20-30 days. Less frequently, flank eruptions can be larger and more complex, lasting several months and/or emitting much larger volumes of lava. By combining historical and recent observations, we suggest that magma overpressure at shallow depth is the main cause of flank events. Major eruptions seem to be related to a deeper source able to trigger large magma injections through deep structures, such as rift faults. Since April 2012, the activity of Nyamulagira is restricted to the summit caldera, with continuous and intense gas emissions and, since mid-2014, by lava fountains. This change in eruptive behavior, if it persists, may leads to the emergence of a new lava lake and may significantly decreases the frequency of flank events