V53B-4844:
Melting Processes and Mantle Heterogeneity Recorded by Individual Phases from Mid-Ocean Ridge Basalts

Friday, 19 December 2014
Kevin W Burton, University of Durham, Durham, United Kingdom and Ian John Parkinson, University of Bristol, Department of Earth Sciences, Bristol, United Kingdom
Abstract:
Isotope and elemental studies of mantle rocks and oceanic basalts demonstrate that Earth’s mantle is heterogeneous, comprising distinct components that have experienced isolated long-term evolution, on both global and local scales. In principle, such heterogeneity will control the onset of melting and at least some of the chemical variation seen in Mid-Ocean Ridge Basalts (MORB) (e.g. [1]). But, the high degrees of melting that generate MORB, together with magma mixing and assimilation, have the effect of homogenising the compositions of lavas erupted at the surface, concealing the true extent of the variability in the mantle source.

This study presents high-precision double-spike Pb isotope data for the consituent phases of MORB from a single ridge segment from the FAMOUS region (36°50’N) on the Mid-Atlantic ridge. Separated phases from individual basalts show a remarkable variation in Pb isotope composition, greater than that seen for all samples previously analysed from this ridge segment, and encompassing >70% of the variation seeen globally in MORB. These variations cannot be explained by assimilation of seawater altered oceanic crust or by contamination from the Azores, both of which carry a radiogenic Pb isotope siganture. Rather they indicate mixing between an early extremely unradiogenic melt, from which plagioclase, clinopyroxene and sulphide crystallised, sourced by material showing long-term depletion of U, and a later more radiogenic melt that produced the final glass host. Elemental and isotope data suggest that the source of this early melt was ancient, enriched, with a crust-like chemical signature, producing a relatively volatile-rich melt. This study confirms that signficant information may be preserved in the early crystallising minerals at slow spreading ridges, either phenocryst phases or the melt inclusions that they host (e.g. [2]). Overall, these results suggest that there is a simple relationship between the scale and nature of mantle heterogeneity, the thermal regime of melting, and variations in the chemistry of mantle melts that arise during eruption.

[1] Stracke, A. & Bourdon, B. (2009) Geochim. Cosmochim. Acta 73, 218-238. [2] Maclennan J. (2008) Geochim. Cosmochim. Acta 72, 4159–4176.