PP33D-1282:
Onset of uplift and environmental change in East Africa: paleoaltimetry constraints from a 17 Ma beaked whale fossil from northern Kenya

Wednesday, 17 December 2014
Henry Wichura1, Louis L Jacobs2, Manfred R Strecker1, Andrew S Lin2, Michael J Polcyn2, Fredrick K Manthi3, Dale A Winkler2 and Matthew Clemens2, (1)University of Potsdam, Potsdam, Germany, (2)Southern Methodist University, Dallas, TX, United States, (3)National Museum of Kenya, Nairobi, Kenya
Abstract:
Deciphering the timing and magnitude of vertical crustal motions is key to understanding the impact of tectonic uplift on changes in atmospheric circulation, rainfall, and environmental conditions. Uplift of the East African Plateau (EAP) of Kenya has been linked to mantle processes, but paleoaltimetry data are still too scarce to unambiguously constrain plateau evolution and subsequent vertical motions associated with late Cenozoic rifting. Here we assess the fossil remains of a beaked whale (Ziphiidae) from the Turkana region of Kenya, 700 km inland from the present-day coastline of the Indian Ocean. The whale fossil was found at an elevation of 650 m and helps constraining the uplift of the northeastern flanks of the EAP. The Kenyan ziphiid was discovered in fluvio-lacustrine sediments of the extensional Oligo-Miocene Lokichar basin (Mead, 1975) along with terrestrial mammals and freshwater mollusks below a basalt dated at 17.1 ± 1.0 Ma (Boschetto et al., 1992). The unifying characteristics of riverine occurrences of modern marine mammals include sufficient discharge in low-gradient rivers to maintain pathways deep enough to facilitate migration, and the absence of shallow bedrock, rapids and waterfalls. The most likely route, which may have had these characteristics is a fluvial corridor controlled by thermal subsidence of the Cretaceous Anza Rift, which once linked extensional processes in Central and East Africa with the continental margin. The fossil locality and analogies with present-day occurrences of marine mammals in terrestrial realms suggest that the ziphiid stranded slightly above sea level. In combination with 13.5. Ma phonolite flows that utilized eastward-directed drainages away from the EAP the fossil find thus provides the older of only two empirical paleoelevation points that constrain the onset of uplift of the EAP to the interval between approximately 17 and 13 Ma. Topographic uplift of the EAP induced paleoclimatic change from a low-elevation humid environment to highly variable, much drier conditions, which altered biotic communities and drove evolution in East Africa, including that of primates.