EBSD Imaging of Monazite: a Petrochronological Tool?

Friday, 19 December 2014: 4:30 PM
Catherine Mary Mottram and John M Cottle, University of California Santa Barbara, Santa Barbara, CA, United States
Recent advances in in-situ U-Th/Pb monazite petrochronology allow ages obtained from micron-scale portions of texturally-constrained, individual crystals to be placed directly into a quantitative Pressure-Temperature framework.

However, there remain major unresolved challenges in linking monazite ages to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Few studies have quantitatively investigated monazite microstructure, and these studies have largely focused only on crystals produced experimentally (e.g. Reddy et al., 2010). The dispersion in age data commonly yielded from monazite U-Th/Pb datasets suggest that monazite dynamically recrystallises during deformation. It remains unclear how this continual recrystallisation is reflected in the monazite crystal structure, and how this subsequently impacts the ages (or age ranges) yielded from single crystals.

Here, combined laser ablation split-stream analysis of deformed monazite, EBSD imaging and Pressure-Temperature (P-T) phase equilibria modelling is used to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains. These data provide links between ages and specific deformation events, thus helping further our understanding of the role of dynamic recrystallisation in producing age variation within and between crystals in a deformed rock. These data provide a new dimension to the field of petrochronology, demonstrating the importance of fully integrating the Pressure-Temperature-time-deformation history of accessory phases to better interpret the meaningfulness of ages yielded from deformed rocks.

Reddy, S. et al., 2010. Mineralogical Magazine 74: 493-506