The Relationship between Dynamic Topography and Sequence Stratigraphy

Thursday, 18 December 2014: 4:30 PM
Nicholas J White, University of Cambridge, Cambridge, United Kingdom
An evolving pattern of convective circulation within the mantle generates and maintains dynamic topography which is some fraction of observed topography. Spatial variations of dynamic topography are easy to measure within the oceanic realm and it is possible to exploit inventories of seismic reflection and wide-angle data to determine the dynamic topography of the oldest oceanic lithosphere that abuts passive continental margins. Results show that oceanic lithosphere has dynamic topographic anomalies of +/- 1 km with wavelengths of 500-1000 km. These substantial anomalies intersect coastal shelves and so it is expected that the development of these anomalies has affected sequence stratigraphic architecture in important ways. A series of examples will be used to illustrate how sequence stratigraphy can be profoundly influenced by changing patterns of dynamic topography. First, along the West African margin a set of dynamic topographic domes intersect the shelf edge. Onshore, the Neogene growth of these domes is recorded by emergent terraces and by drainage patterns. Offshore, an Oligo-Miocene switch from aggradation to progradation together with a series of younger disconformities have modified stratigraphic architecture along the shelf. Secondly, along the Northwest Shelf of Australia there is evidence for 700 m of dynamic drawdown of the oldest oceanic floor. Regional mapping and backstripping of clinoformal geometries within a Miocene carbonate reef complex shows that there is a dramatic switch from progradation to aggradation which cannot be attributed to glacio-eustatic variations. Instead, this switch appears to reflect growth of dynamic drawdown within the mantle. Finally, the Icelandic plume has controlled vertical motions along fringing North Atlantic margins over the last 60 Ma. Thanks to the intersecting mid-oceanic ridge, there is independent evidence that the temperature structure of this plume has fluctuated through time. These fluctuations are recorded within the detailed sequence stratigraphy of the margins where a series of ephemeral terrestrial landscapes have been mapped. Stratigraphic architecture appears to be an important repository of details about transient convective circulation which are otherwise difficult to obtain.