DI41B-4329:
Imaging Resolution of the 410-km and 660-km Discontinuities

Thursday, 18 December 2014
Kai Deng1,2 and Ying Zhou2, (1)ITAG Institute of Theoretical and Applied Geophysics, Peking University, Beijing, China, (2)Virginia Tech, Blacksburg, VA, United States
Abstract:
Structure of seismic discontinuities at depths of about 410 km and 660 km provides important constraints on mantle convection as the associated phase transformations in the transition zone are sensitive to thermal perturbations. Teleseismic P-to-S receiver functions have been widely used to map the depths of the two discontinuities. In this study, we investigate the resolution of receiver functions in imaging topographic variations of the 410-km and 660-km discontinuities based on wave propagation simulations using the Spectral Element Method (SEM). We investigate finite-frequency effects of direct P waves as well as P-to-S converted waves by varying the length scale of discontinuity topography in the transition zone. We show that wavefront healing effects are significant in broadband receiver functions. For example, at a period of 10 to 20 seconds, the arrival anomaly in P-to-S converted waves is about 50% of what predicted by ray theory when the topography length scale is in the order of 400 km. The observed arrival anomaly further reduces to 10-20% when the topography length scale reduces to about 200 km. We calculate 2-D boundary sensitivity kernels for direct P waves as well as receiver functions based on surface wave mode summation and confirm that finite frequency-effects can be properly accounted for. Three-dimensional wavespeed structure beneath seismic stations can also introduce significant artifacts in transition zone discontinuity topography if time corrections are not applied, and, the effects are dependent on frequency.