Aerosol and Earth’s Climate: A Perspective from Energy and Water Cycles

Wednesday, 17 December 2014: 9:30 AM
Zhanqing Li, Univ of Maryland College Park, College Park, MD, United States
Aerosol particles can affect virtually all meteorological variables due to their direct and indirect effects by altering Earth’s energy and water cycles. Heavy loading of aerosols reduce the amount of solar radiation reaching ground, that could lower surface temperature, reduce ocean-land contrast and thus affect monsoon system, whereas solar energy absorbed by aerosols alters atmospheric stability to have a feedback effect on atmospheric dynamics. By altering cloud microphysics and macrophysics, aerosols can also change cloud properties and precipitation frequency and amount. All of these can influence regional weather and climate in a dramatically. We have analyzed ample data from long-term routine measurements, intensive field experiments and global satellite products to study, together with some modeling studies, to study the impact of aerosol on global and regional climate. Particular attention will be given to the findings from our experiments as EAST-AIRE and EAST-AIRC, and DOE ARM Mobile Facility deployment in China where severe air pollution seems to have significantly impeded upon the regional climate and its long-term changes in terms of temperature, precipitation, thunderstorm, fog, atmospheric circulation, etc.