V14B-04:
Thermal history of pyroclastic density currents and pyroclasts at Tungurahua, Ecuador

Monday, 15 December 2014: 4:45 PM
Mary C Benage and Josef Dufek, Georgia Institute of Technology Main Campus, Atlanta, GA, United States
Abstract:
The associated hazards and opaqueness of pyroclastic density currents (PDCs) make it impossible for in-situ thermal or concentration measurements within the currents that would provide critical information on the dynamics of PDCs. The entrainment of ambient air into these currents significantly impacts their runout distance and thermal history. The most efficient mechanism to cool a PDC is through the entrainment of colder, denser ambient air through Kelvin-Helmholtz and lobe-and-cleft instabilities, which are dependent on density stratification in the current and topographic-current interactions. The combination of high-resolution multiphase numerical models in concert with field measurements of PDC deposits allows us to better understand the evolving concentration gradients, instabilities, entrainment of air, and temperatures of PDCs. We employ a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, high-resolution topography, and field data to understand the PDCs that traveled down the Juive Grande quebrada during the 2006 eruption of Tungurahua volcano. The multiphase model allows us to examine PDC dynamics such as particle concentrations, velocities, thermal heterogeneities, and ambient air entrainment. As the PDC propagates, the entrainment coefficient decreases due to enhanced density stratification. The interaction of the current with rugged topography increases the entrainment coefficient. We also calculate the temperature of deposition and breadcrust bomb rind thickness for individual pyroclasts. The individual pyroclasts are tracked as Lagrangian particles in the multiphase model and we employ the breadcrust bomb model (Benage et al., 2014) to calculate the deposition temperature and the formation of the non-vesicular to low vesicularity rinds. The model results are compared to paleomagnetic data and field measurements of rind thickness, respectively. This allows the deposited pyroclasts to be natural thermometers that help constrain the thermal history of the PDCs. Through these field-constrained models we are able to examine the interior of these currents that are otherwise inaccessible.