C53A-0287:
Noble Gas Signatures in Greenland – Tracing Glacial Meltwater Sources

Friday, 19 December 2014
Yi Niu, M. Clara Castro, Chris M Hall, Sarah Aciego, Emily I Stevenson and Carli A Arendt, University of Michigan, Department of Earth and Environmental Sciences, Ann Arbor, MI, United States
Abstract:
This study is meant to explore the information noble gases can provide in glacial environments with respect to glacial meltwater sources, relative source contributions, water residence times, and spatial location where this glacial meltwater originates in the ice sheet. Ultimately, we seek to improve our understanding on the dynamics of these massive ice sheets, critical for the major role they play on climate change. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) allowing for calculation of noble gas temperatures (NGTs) and, under certain assumptions, estimation of the altitude at which glacial meltwater originated. In addition, crustally produced isotopes such as He accumulate in water over time, allowing for estimation of water residence times.

Glacial meltwater samples were collected and analyzed for noble gas concentrations and isotopic ratios at five different locations in southern Greenland, between sea level and 1221 m. All samples are enriched in He with respect to ASW and are depleted in all other noble gases. Two patterns are apparent. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, a pattern first observed in high-altitude springs in the Galápagos Islands. The second one displays a mass-dependent pattern, a pattern first observed in Michigan rainwater samples. Most samples point to equilibration temperatures at ~0°C and altitudes between 1000 m and 2000 m, values which are consistent with both temperatures and elevations in Greenland. He concentrations vary between 1.1 and 7 times that of ASW and suggest glacial meltwater ages between ~170 and 1150 yrs, a result which is consistent with a preliminary tritium analysis. He isotopes point to surface (precipitation as snow and rainfall) contributions for most samples between ~60% and 90% with a ~10% – 40% crustal contribution from groundwater.