NS41B-3834:
Location Capability and Site Characterization Installing a Borehole VBB Seismometer: the OGS Experience in Ferrara (Italy)

Thursday, 18 December 2014
Damiano Pesaresi and Carla Barnaba, National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
Abstract:
The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 19 very sensitive broad band and 17 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS CRS data centre in Udine.

The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara and to the deployment of a temporary seismographic network consisting of eight portable seismological stations, to record the local earthquakes that occurred during the seismic sequence. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate seismic site responses in the area.

We will introduce details of the Ferrara VBB borehole station and the OGS temporary seismographic network configuration and installation. We will then illustrate the location capability performances, and finally we will shortly describe seismic site characterization with surface/borehole comparisons in terms of seismic noise, site amplification and resonance frequencies.