V41C-4829:
Some Recent USF Studies at Volcanoes in Central America

Thursday, 18 December 2014
Stephen R McNutt, Univ South Florida, Tampa, FL, United States
Abstract:
Scientists at the University of South Florida (USF) have been working in Central America for several decades. Efforts have focused on Physical Volcanology in Nicaragua, GPS in Costa Rica, and assessment of Geothermal projects in El Salvador, amongst others. Two years ago a Seismology Lab was established at USF. Personnel now include three Professors, a Post-Doc, and 4 graduate students. Seismic and GPS networks were installed at Telica Volcano, Nicaragua, in 2010 by Roman, LaFemina and colleagues. Data are recorded on site and recovered several times per year at this persistently restless volcano, which has rates of 5 to 1400 low frequency seismic events per day (Rodgers et al., submitted). Proposals have been submitted to install instruments on other Nicaraguan volcanoes, including seismometers, GPS, infrasound, and lightning sensors. This suite of instruments has proven to be very effective to study a range of volcanic processes. The proposals have not been successful to date (some are pending), and alternative funding sources are being explored. One interesting scientific issue is the presence of strong seasonal effects, specifically a pronounced rainy season and dry season and possible interaction between shallow volcanic processes and surface waters. We are also pursuing a variety of studies that are complementary to the instrumental efforts. One such study is examining volcanic earthquake swarms, with the focus to date on identifying diagnostics. One clear pattern is that peak rates often occur early in swarms, whereas the largest M event occurs late. Additional evidence suggests that the seismic source size grows systematically, especially for events with similar waveforms (families). Recognition of such patterns, linked to processes, may help to improve monitoring and better take advantage of instrumental data to reduce vulnerability from eruptions.