Combined Effects of Dam Removal and Past Sediment Mining on a Relatively Large Lowland Sandy Gravelly Bed River (Vienne River, France).

Wednesday, 17 December 2014
Stephane Rodrigues1, Ovidiu Ursache1, Jean-Pierre Bouchard2 and Philippe Juge1, (1)University of Tours - Department Geosciences/Environment / EA6293 GeHCO, Geosciences/Environment / EA6293 GeHCO, Tours, FL, France, (2)EDF R&D, Chatou, France
Dam removal is of growing interest for the management of sediment fluxes, morphological evolution and ecological restoration of rivers. If dam removal experiments are well documented for small streams, examples of lowland and large rivers are scarce. We present the morphological response of a relatively large lowland river (Vienne River, France) to a dam removal. The objective is to understand and quantify the morphological adaptation on a reach of 50 km and over 15 years associated with the dam removal and the presence of ancient sand pits located along the riverbed. This study is based on field data collected during 7 surveys performed between 1998 and 2013. This dataset focuses on bed geometry, sediment grain size, and bedload fluxes. It was combined with a 1D numerical model to assess flow dynamics and sediment transport before and after dam removal. Results show that dam removal triggered both regressive and progressive erosions and that discharges higher than 100 m3.s-1 were sufficient to erode the sandy sediments trapped by the dam whereas gravels were mobilised for discharges higher than 300 m3.s-1. Since 1999, large bedload sediment waves coming from upstream migrated downstream at an average celerity of 2.2 km.year-1 and were trapped by three ancient sand pits located downstream. Some of these pits constitute efficient sediment traps even 15 years after dam removal. As a result, between 2002 and 2013, the slope of the river bed adjusted gently and observed morphological processes were minors compared with the time period between 1998 and 2002.