Assessing Dryland Ecosystem Services in Xinjiang, Northwest China

Monday, 15 December 2014
Tuck Fatt Siew1, Kate A Brauman2, Lijun Zuo3 and Petra M Doll1, (1)Goethe University Frankfurt, Frankfurt, Germany, (2)University of Minnesota Twin Cities, Minneapolis, MN, United States, (3)CAS Chinese Academy of Sciences, Beijng, China
Dryland ecosystems, including grassland, forest, and irrigated cropland, cover about 41% of earth’s land area and are inhabited by over two billion people. In drylands, particularly arid and semiarid areas, the production of ecosystem services is primarily constrained by freshwater availability. Often, water allocated to production by one ecosystem or of one ecosystem service negatively impacts other ecosystems or ecosystem services (ESS). The challenge is to determine how much water should be allocated to which ecosystems (natural and manmade) such that multiple ESS are maximized, thus improving overall well-being. This strategic management decision must be supported by knowledge about spatial and temporal availability of water and its relationship to production (location and scale) of ESS that people receive. We assess the spatial and temporal relationships between water availability and ESS production in Xinjiang, Northwest China. We address four questions: (1) What services are produced by which ecosystems with water available? (2) Where are these services produced? (3) Who uses the services produced? (4) How the production of services changes with variability of water available? Using existing global, national, and regional spatial and statistical data, we assess food, fiber, livestock, and wood production as well as unique forest landscapes (as a proxy for aesthetic appreciation and habitats for unique animals and plants) and protection from dust storms. Irrigation is necessary for crop production in Xinjiang. The production of about 4.2 million tons of wheat and 500,000 tons of cotton requires more than 2 km3 of water each year. This is an important source of food and income for local residents, but the diverted water has negative and potentially costly impacts on downstream forests that potentially provide aesthetic services and protection from dust. Our analyses also show that cropland had increased by about 1.6 million ha from 1987 to 2010, while grassland and woodland had decreased by about 1.5 million ha and 33,000 ha, respectively. Cropland expansion had increased water need for irrigation and decreased services produced by other ecosystems. This assessment helps understand connections between water and ESS better and contributes to water and land management in dry regions, particularly China.