P33D-4050:
Explaining the Noble Gas Content of the Planets: Theoretical Models for Argon-Trapping by Amorphous Ices in the Solar Nebula
Wednesday, 17 December 2014
Cecilia Brooke Sanders and Fred Ciesla, University of Chicago, Chicago, IL, United States
Abstract:
The composition of planets in the modern solar system can be traced to the chemistry and physics of the solar nebula, the diffuse disk of gas and dust that surrounded the young sun immediately after its formation. Materials such as the noble gases were too volatile to be chemically incorporated by planetary embryos. Instead, it is likely that they were trapped physically and transported to the inner planets by migrating comets and planetesimals. One trapping mechanism under consideration is the capture of noble gas atoms in amorphous ices on the surface of cold grains. We created a simple numerical model to explore this mechanism, using argon as a representative volatile gas. We have demonstrated that our model reproduces experimental trapping efficiencies (ratio of the volatile atoms to water molecules in the deposited ice) when we constrain the binding energy of our representative volatile to 3500-5500K and the sticking efficiency of volatile atoms to 0.004x gas phase water pressure. Binding energy and sticking efficiency are poorly understood for most volatile substances, but this study finds that they are among the most critical when predicting the trapping of volatiles in the physical world. Constraining these parameters under nebular conditions will allow us to evaluate how much argon could have been trapped in nebular ices and ultimately assess the role of amorphous ice trapping in the origin of planetary volatiles.