T22B-01:
What really causes flat slab subduction?

Tuesday, 16 December 2014: 10:20 AM
Vlad Constantin Manea, Centro de Geociencias, UNAM, Queretaro, Mexico, Marta Perez-Gussinye, Royal Holloway University of London, Egham, United Kingdom and Marina Manea, UNAM National Autonomous University of Mexico, Mexico City, Mexico
Abstract:
How flat slab geometries are generated has been long debated. It has been suggested thattrenchward motion of thick cratons in some areas of South America and Cenozoic NorthAmerica progressively closed the asthenospheric wedge and induced flat subduction. Here wedevelop time-dependent numerical experiments to explore how trenchward motion of thickcratons may result in flat subduction. We find that as the craton approaches the trench andthe wedge closes, two opposite phenomena control slab geometry: the suction between oceanand continent increases, favoring slab flattening, while the mantle confined within the closingwedge dynamically pushes the slab backward and steepens it. When the slab retreats, as inthe Peru and Chile flat slabs, the wedge closure rate and dynamic push are small and suctionforces generate, in some cases, flat subduction. We model the past 30 m.y. of subduction in theChilean flat slab area and demonstrate that trenchward motion of thick lithosphere, 200–300km, currently ~700–800 km away from the Peru-Chile Trench, reproduces a slab geometrythat fits the stress pattern, seismicity distribution, and temporal and spatial evolution ofdeformation and volcanism in the region. We also suggest that varying trench kinematics mayexplain some differing slab geometries along South America. When the trench is stationaryor advances, the mantle flow within the closing wedge strongly pushes the slab backward andsteepens it, possibly explaining the absence of flat subduction in the Bolivian orocline.