OS31B-0995:
An improved multivariate analytical method to assess the accuracy of acoustic sediment classification maps.

Wednesday, 17 December 2014
Manuela Biondo, MARUM - University of Bremen, The International Research Training Group - INTERCOAST, Bremen, Germany and Alexander Bartholomä, Senckenberg am Meer, Marine Sedimentology, Wilhelmshaven, Germany
Abstract:
High resolution hydro acoustic methods have been successfully employed for the detailed classification of sedimentary habitats. The fine-scale mapping of very heterogeneous, patchy sedimentary facies, and the compound effect of multiple non-linear physical processes on the acoustic signal, cause the classification of backscatter images to be subject to a great level of uncertainty. Standard procedures for assessing the accuracy of acoustic classification maps are not yet established.

This study applies different statistical techniques to automated classified acoustic images with the aim of i) quantifying the ability of backscatter to resolve grain size distributions ii) understanding complex patterns influenced by factors other than grain size variations iii) designing innovative repeatable statistical procedures to spatially assess classification uncertainties.

A high-frequency (450 kHz) sidescan sonar survey, carried out in the year 2012 in the shallow upper-mesotidal inlet the Jade Bay (German North Sea), allowed to map 100 kmof surficial sediment with a resolution and coverage never acquired before in the area. The backscatter mosaic was ground-truthed using a large dataset of sediment grab sample information (2009-2011). Multivariate procedures were employed for modelling the relationship between acoustic descriptors and granulometric variables in order to evaluate the correctness of acoustic classes allocation and sediment group separation.

Complex patterns in the acoustic signal appeared to be controlled by the combined effect of surface roughness, sorting and mean grain size variations. The area is dominated by silt and fine sand in very mixed compositions; in this fine grained matrix, percentages of gravel resulted to be the prevailing factor affecting backscatter variability. In the absence of coarse material, sorting mostly affected the ability to detect gradual but significant changes in seabed types. Misclassification due to temporal discrepancies between the acoustic and ground-thruthing datasets were quantified through the method.

The effectiveness of the analytical approach was tested by extending the latter to the analysis of data collected in the area during a strategically designed survey carried out in July 2014.