H54C-06:
Impacts of Reprojection and Sampling of MODIS Satellite Images on Estimating Crop Evapotranspiration Using METRIC model

Friday, 19 December 2014: 5:15 PM
Mahesh Pun, University of Nebraska Lincoln, Lincoln, NE, United States, Ayse Kilic, University of Nebraska-Lincoln, Lincoln, NE, United States and Rick Allen, University of Idaho, Department of Biological and Agricultural Engineering, Moscow, ID, United States
Abstract:
Landsat satellite images have been used frequently to map evapotranspiration (ET) andbiophysical variables at the field scale with surface energy balance algorithms. Although Landsat images have high spatial resolution with 30m cell size, it has limitations for real time monitoring of crop ET by providing only two to four images per month for an area, which, when encountered with cloudy days, further deteriorates the availability of images and snapshots of ET behavior. Therefore real time monitoring essentially has to include near-daily thermal satellites such as MODIS/VIIRS into the time series. However, the challenge with field scale monitoring with these systems is the large size of the thermal band which is 375 m with VIIRS and 1000 meter with MODIS. To maximize the accuracy of ET estimates during infusion of MODIS products into land surface models for monitoring field scale ET, it is important to assess the geometric accuracy of the various MODIS products, for example, spatial correspondence among the 250 m red and near-infrared bands, the 500 m reflectance bands; and the 1000 m thermal bands and associated products. METRIC model was used with MODIS images to estimate ET from irrigated and rainfed fields in Nebraska. Our objective was to assess geometric accuracy of MODIS image layers and how to correctly handle these data for highest accuracy of estimated ET at the individual field scale during the extensive drought of 2012. For example, the particular tool used to subset and reproject MODIS swath images from level-1 and level-2 products (e.g., using the MRTSwath and other tools), the initial starting location (upper left hand corner), and the projection system all effect how pixel corners of the various resolution bands align. Depending on the approach used, origin of pixel corners can vary from image to image date and therefore impacts the pairing of ET information from multiple dates the consistency and accuracy of sampling ET from within field interiors. Higher level MODIS products, including multi-day products, can have more consistent registration, but may suffer some compromisation of spatial fidelity due to the resampling required during various reprocessing steps.