EP13B-3517:
Propagation and effects of monsoonal seasonally intense rainfall signal in river strata

Monday, 15 December 2014
Piret Plink-Bjorklund, Colorado School of Mines, Golden, CO, United States
Abstract:
Climatic forcing signals in river systems tend to be modified on different temporal and spatial scales due to inherent signal buffering, re-routing, and a complex mixing of multiple autogenic and allogenic signals. Thus climate forcing response is generally assumed inherently non-linear with significant hysteresis effects.

This paper explores propagation and effects of monsoonal, seasonally intense rainfall signal in river strata in the monsoonal and bordering subtropical domains. Some such rivers occur completely within the monsoon climate zone. Others have parts of their drainages in temperate climate zones, or on high elevations and receive some of their water discharge from other sources. Yet others, have their upstream drainages in the tropical monsoon climates, but flow through bordering subtropical drylands. Yet, all these rivers characteristically experience seasonal high magnitude floods as the effect of intense monsoon precipitation. Many rivers in the bordering subtropical zone receive monsoon rain and transmit discharge only during abnormal or strengthened monsoon seasons and associated cyclonic flow.

Field datasets, comparison to modern river deposits and a literature review of monsoonal and bordering subtropical domain rivers reveal that the effects of the intense seasonal monsoon rain and the resultant flooding are readily recognizable in modern and ancient fluvial strata. This paper argues that this distinct and dominant climate signal propagation occurs because it is the monsoon discharge that is commonly responsible for up to 100% of sediment erosion, transport and deposition, creating a system wide flushing or splash effect on a single season to multi-million year time scale. The distinct monsoon flood deposits are interbedded with other types of fluvial strata in systems where significant deposition also occurs from low-magnitude flood or non-flood discharges.