B12C-07:
Soil nitrogen gas fluxes during woody legume encroachment: Does encroachment increase gaseous losses?

Monday, 15 December 2014: 11:50 AM
Fiona Soper1, Peter M Groffman2 and Jed P Sparks1, (1)Cornell University, Ithaca, NY, United States, (2)Cary Inst Ecosystem Studies, Millbrook, NY, United States
Abstract:
Expansion of nitrogen (N2)-fixing trees is a major driver of ecosystem N enrichment in semi-arid grasslands. During this process, fluxes of N trace gases from soils are likely mediated by interactions between changing soil N availability and primary abiotic biogeochemical drivers in arid systems, namely temperature and wetting/re-wetting dynamics. We investigated the effects of encroachment, season and rainfall dynamics on total reactive N flux (NO, NOy, NH3, N2O) in a sub-tropical, semi-arid Texan savanna encroached by N-fixing Prosopis glandulosa over two years. We compared unencroached upland grasslands and non-fixing woody clusters with continuous Prosopis cover over uplands, intermediate drainages, and playa lowlands. We also quantified denitrification potential of intact soil cores to determine whether N2 could contribute significantly to soil N flux.

Substantial soil N enrichment in upland Prosopis groves did not elevate N fluxes above those in remnant grasslands, though lower (moister) landscape positions did exhibit higher total emissions. Along with temperature, soil-wetting dynamics explained the greatest portion of variation in emissions and interacted with vegetation type. Timing and quantity of most recent soil wetting and interval to previous wetting were significant predictors, highlighting the importance of dynamics not captured by soil moisture measurements alone. As with other arid systems, rainfall events after dry periods can stimulate pulse emissions of >400 ug NO-N m-2 h-1. At realistic soil O2 concentrations, N2 fluxes fell below the detection limit of the Nitrogen-Free Atmospheric Recirculation Method system (~11 ug N m-2 h-1). However, applying plausible N2O:N2 flux ratios likely constrains the flux to much lower levels under field conditions. We conclude that encroachment does not increase N fluxes from upland savannas, but that interactions with rainfall and landscape position are important determinants of total emissions.